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Figure 1: Given an input image, the Program-Guided Image Manipulator (PG-IM) detects repeated entities in the image (pieces of cereal)
and then infers a program-like representation for describing the regularity of the image. The regularity representation empowers multiple
downstream tasks, such as image inpainting, extrapolation, and regularity editing.

Abstract
Humans are capable of building holistic representations

for images at various levels, from local objects, to pair-
wise relations, to global structures. The interpretation of
structures involves reasoning over repetition and symme-
try of the objects in the image. In this paper, we present
the Program-Guided Image Manipulator (PG-IM), inducing
neuro-symbolic program-like representations to represent
and manipulate images. Given an image, PG-IM detects
repeated patterns, induces symbolic programs, and manipu-
lates the image using a neural network that is guided by the
program. PG-IM learns from a single image, exploiting its
internal statistics. Despite trained only on image inpainting,
PG-IM is directly capable of extrapolation and regularity
editing in a unified framework. Extensive experiments show
that PG-IM achieves superior performance on all the tasks.

1. Introduction
Looking at the images in Figure 1, we effortlessly identify

the objects (pieces of cereal) in the image, interpret their
pairwise relations, and reason over the global regularity:

∗ equal contribution; order determined by a coin toss.

all pieces of cereal are organized on a 2D lattice with a
triangular boundary. This holistic representation empowers
our imagination of unseen objects: we can inpaint missing
pixels in images, extrapolate images while preserving the
regularity [33], and reduce or exaggerate the regularity.

While tremendous progress has been made in object
recognition [17] and visual relation detection [27], a global
representation for structural regularity is still missing in
these studies. In this paper, we propose to augment deep
networks, which are very powerful in pixel-level recogni-
tion, with symbolic programs, which are flexible to capture
high-level regularity within the image. The intuition is that
the disentanglement between perception and reasoning will
enable complex image manipulation, preserving both high-
level scene structure and low-level object appearance.

Our model, the Program-Guided Image Manipulator (PG-
IM), induces symbolic programs for global regularities and
manipulates images with deep generative models guided by
the programs. PG-IM consists of three modules: a neural
module that detects repeated patterns within the input im-
age, a symbolic program synthesizer that infers programs
for spatial regularity (lattice structure) and content regular-
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ity (object attributes), and a neural generative model that
manipulates images based on the inferred programs.

We demonstrate the effectiveness of PG-IM on two
datasets: the Nearly-Regular Pattern dataset [22] and the
Facade dataset [39]. Both datasets contain nearly-regular im-
ages with lattice patterns of homogeneous objects. We also
extend our experiments to a collection of Internet images
with non-lattice patterns and variations in object appear-
ance. Our neuro-symbolic approach robustly outperforms
neural and patch-matching-based baselines on multiple im-
age manipulation tasks, such as inpainting, extrapolation,
and regularity editing.
2. Related Work
Image manipulation. Image manipulation is a long-
standing problem in computer vision, graphics, and com-
putational photography, most often studied in the context
of image inpainting. Throughout decades, researchers have
developed numerous inpainting algorithms operating at var-
ious levels of image representations: pixels, patches, and
most recently, holistic image features learned by deep net-
works. Pixel-based methods often rely on diffusion [2, 5]
and work well when the holes are small; later, patch-based
methods [11, 6] accelerate pixel-based methods and achieve
better results. Both methods do not perform well in cases that
require high-level information beyond background textures.

Deep networks are good at learning semantics from large
datasets, and the learned semantic information has been ap-
plied to image manipulation [42, 31, 40]. Many follow-ups
have been proposed to improve the results via multi-scale
losses [19, 45], contextual attention [47], partial convolu-
tion [25], gated convolution [48], among others [50, 44].
Although these methods achieve impressive inpainting re-
sults with the learned semantic knowledge, they have two
limitations: first, they rely on networks to learn object struc-
ture implicitly, and may fail to capture explicit, global object
structures, such as the round shape of a clock [43]; second,
the learned semantics is specific to the training set, while
real-world test images are likely to be out-of-distribution.
Very recently, Xiong et al. [43] and Nazeri et al. [29] tackled
the first problem by explicitly modeling contours to help
the inpainting system preserve global object structures. In
this paper, we propose to tackle both problems using a com-
bination of bottom-up deep recognition networks and the
top-down neuro-symbolic program induction. We apply our
approach to scenes with an arbitrary number of objects.
Program induction and procedural modeling. The idea
of using procedural modeling for visual data has been a
well-studied topic in computer graphics, mostly for indoor
scenes [41, 24, 30] and 3D shapes [23]. More recently, with
deep recognition networks, researchers have studied con-
verting 2D images to line-drawing programs [12], primitive
sets [36], markup code [10, 7], or symbolic programs with
attributes [26]. These papers tackle synthetic images in a

constrained domain, while here we study natural images.
SPIRAL [15] used reinforcement learning to derive

“drawing commands” for natural images. Their commands
are, however, not interpretable, and it is unclear how they
can be extended to handle complex relations among a set of
objects. Most recently, Young et al. [46] integrated formal
representations with deep generative networks and applied
it to natural image inpainting. Still, our model differs from
theirs in two aspects. First, we use neural modules for dis-
covering repeated patterns in images, which does not require
the patch of interest to repeat itself over the entire image (an
assumption made in [46]). Second, their algorithm requires
learning semantics on a pre-defined dataset for manipulation
(e.g., image extrapolation); in contrast, our model exploits
the idea of internal learning [38] and requires no training
data during image manipulation other than the image itself.
Single-image learning. Because visual entropy inside a
single image is lower than in a diverse collection of im-
ages [51], many works have exploited image-level (instead
of dataset-level) statistics for various image editing tasks in-
cluding deblurring [3, 28], super-resolution [16, 13, 18], and
dehazing [4]. The same philosophy has also been proven suc-
cessful in deep learning, where neural networks are trained
on (and hence overfit to) a single image. Such image-specific
networks effectively encode image priors unique to the in-
put image [40]. They can be used for super-resolution [38],
layer decomposition [14], texture modeling [8, 50], and even
generation tasks [35, 37].

Powerful as these approaches are, they often lack a high-
level understanding of the input image’s global structure
(such as the triangular shape formed by the cereal in Fig-
ure 1). Consequently, there is usually no guarantee that
the original structure gets preserved after the manipulation
(e.g., Row 2 of Figure 5). This work augments single-image
learning methods with symbolic reasoning about the input
image’s global structure, not only providing a natural way
of preserving such structure, but also enabling higher-level,
semantic manipulation based on the structure (e.g., extrap-
olating an additional row of cereal following the triangular
structure in the teaser figure).

3. Program-Guided Image Manipulator
The Program-Guided Image Manipulator (PG-IM) con-

tains three modules, as shown in Figure 1. First, PG-IM de-
tects repeated objects and make them a variable-length stack
(Section 3.1). Then, it infers a program to describe the global
regularity among the objects (Section 3.2), with program to-
kens such as for-loops for repetition and symmetry. Finally,
the inferred program facilitates image manipulation, which
is performed by a neural painting network (Section 3.3).

3.1. Repeated Object Detection
PG-IM detects repeated objects in the input image with a

neural module based on Lettry et al. [22]. Given the input im-
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Figure 2: The three-step inference of a program describing the shown repeated pattern. Assuming the input keypoints follow a lattice pattern,
we first search for parameters defining the lattice, such as the distance between nearby keypoints and the origin. Next, we fit boundary
conditions for the program. Finally, we cluster objects into groups by their visual appearance, and fit an expression describing the variation.
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Figure 3: Illustrative programs inferred from (top row) the Nearly-
Regular Pattern dataset [22], (middle row) the Facade dataset [39],
and (bottom row) Internet images. The DSL of the inferred pro-
grams supports for-loops, conditions, and attributes.

age, it extracts convolutional feature maps from a pre-trained
convolutional neural network (i.e., AlexNet [21]). A morpho-
logical filter is then applied to the feature maps for extracting
activated neurons, resulting in a stack of peakmaps. Next,
assuming the lattice pattern of repeated objects, a voting
algorithm is applied to compute the displacements between
nearby objects. Finally, an implicit pattern model (IPM) is
employed to fit the centroids of objects. Please see [22] and
the supplementary material for details of the algorithm.

3.2. Program Synthesizer
The program synthesizer takes the centroids of the re-

peated objects as input and infers a latent program describing
the pattern. The input image is partitioned into object patches
by constructing a Voronoi graph of all pixels. That is, each
pixel is assigned to its nearest centroid, under the metric of
Euclidean distance between pixel coordinates. Meanwhile,
objects are clustered into multiple groups. When the pro-
gram reconstructs an object with the Draw command, it is
allowed to specify both the coordinate of the object’s cen-
troid (x, y) and an integer (namely, the attribute), indicating
which group this object belongs to. We implement our pro-
gram synthesizer as a search-based algorithm that finds the
simplest program that reconstructs the pattern.

Domain-specific language. We summarize the domain-
specific language (DSL) used by PG-IM for describ-
ing object repetition in Table 1. In a nutshell,
ForStmt1 and ForStmt2 jointly define a lattice struc-
ture; CondDrawExpr defines the boundary of the lat-

Program −→ For1Stmt

For1Stmt −→ For ( i in range(Integer, Integer) )
{ For2Stmt }

For2Stmt −→ For ( i in range(Integer, Integer) )
{ CondDrawStmt }

CondDrawStmt −→ If (Expr≥ 0) { CondDrawStmt }
CondDrawStmt −→ DrawStmt

DrawStmt −→ Draw (x=Expr, y=Expr,
attribute=AttributeExpr )

AttributeExpr −→ Expr // Integer
AttributeExpr −→ 1 If (Expr == 0) else 0
AttributeExpr −→ 1 If (Expr == 0 and Expr == 0) else 0
AttributeExpr −→ 1 If (Expr % Integer == 0) else 0
AttributeExpr −→ 1 If (Expr % Integer == 0 and Expr % Integer ==

0) else 0
Expr −→ Integer * i + Integer * j + Integer

Table 1: The domain-specific language (DSL) for describing image
regularities. Language tokens including For, If, Integer and
arithmetic/logical operators follow the convention of Python.

tice; Draw places an object at a given coordinate.
AttributeExpr allows the attribute of the object to be
conditioned on the loop variables (i and j). Figure 3 shows
illustrative programs inferred from different datasets.
Program search. Finding the simplest program for de-
scribing a regularity pattern involves searching over a large
compositional space of possible programs, which contains
for-loops, if-conditions, coordinate expressions, and attribute
expressions. To accelerate the search, we heuristically di-
vides the search process into three steps, as illustrated in
Figure 2. First, we search over all possible expressions for
the coordinates, and find the one that fits the detected cen-
troids the best. Second, we determine the conditions (the
boundary). Finally, we find the expression for attributes.
Lattice search. The lattice search finds the expressions
for coordinates x and y, ignoring all potential conditions
and attribute expressions. Thus, the search process can be
simplified as finding a 5-tuple (bx, by, dx,i, dx,j , dy,j) that
satisfies x = bx + i · dx,i + j · dx,j and y = by + j · dy,j .

Each tuple defines a set of centroids P containing all
(x, y) pairs whose coordinates are within the boundary of
the whole image. We compare these sets with the centroids
C detected by the repeated pattern detector. We find the
optimal tuple as the one that minimizes a cost function

Llat =
∑

(x,y)∈C

min
(u,v)∈P

[
(x− u)2 + (y − v)2

]
+ λ|P|, (1)

where λ = 5 is a hyperparameter for regularization. It
matches each detected centroid with the nearest one recon-
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Figure 4: A neural painting network (NPN) takes as input an image and a set of source patches, derived from the image with its program
description, and outputs a manipulated image. An NPN learns from a single image, exploiting the image’s internal statistics. Trained only on
inpainting, it can directly extrapolate and edit the regularity of the input image in a unified inference framework, without any finetuning.

structed by the program. The goal is to minimize the distance
between them and a regularization term over the size of P.
From a Bayesian inference perspective, P defines a mixture
of Gaussian distribution over the 2D plane. Llat approxi-
mates the log-likelihood of the observation C and a prior
distribution over possible P’s, which favors small ones.
Condition search. In the next step, we generate the con-
ditions of the program, assuming all centroids fit in a convex
hull. This assumption covers both rectangular lattices and
triangular lattices (see Figure 3 for examples). Since all pairs
(x, y) are computed by an affine transformation of all (i, j)’s,
the conditions can be determined by computing the convex
hull of all (i, j)’s that are matched with detected centroids.

Specifically, we first match each coordinate in P with
C by computing a minimum cost assignment between two
sets, where the distance metric is the Euclidean distance in
the 2D coordinate space. We then find the convex hull of
all assigned pairs (i, j). We use the boundary of the convex
hull as the conditions. The conditions include the boundary
conditions of for-loops as well as optional if-conditions.
Attribute search. The last step is to find the expression
that best describes the variance in object appearance (i.e.,
their attributes). Attributes are represented as a set of in-
tegers. Instead of clustering, we assign discrete labels to
individual patches. The label of the patch in row pi, column
pj is a function of (pi, pj). Shown in Table 1, each possible
AttributeExpr defines an attribute assignment function
A(p) , A(pi, pj) for all centroids p = (pi, pj) ∈ P. We
say an expression fits the image if patches of the same label
share similar visual appearance. Formally, we find the opti-
mal parameters for the attribute expression that minimizes

Lattr =
∑
p∈P

∑
q∈P

(
sgn(A(p), A(q))·d(p, q)

)
+µ|A(P)|, (2)

where sgn(A(p), A(q)) = 1 if A(p) = A(q), and −1
otherwise. d computes the pixel-level difference between
two patches centered at (pi, pj) and (qx, qy), respectively.
µ = 10 is a scalar hyperparameter of the regularization
strength. |A(P)| computes the number of distinct values
of A(p) for all p ∈ P. The inference is done by searching
over possible integer templates (e.g., ai + bj + c) and bi-
nary templates (e.g., (ai+ bj + c // d % e) == 0), and the
coefficients (a, b, c, . . . ).
3.3. Neural Painting Networks

We propose the neural painting network (NPN), a neural
architecture for manipulating images with the guidance of
programs. It unifies three tasks: inpainting, extrapolation,
and regularity editing in a single framework. The key obser-
vation is that all three tasks can be cast as filling pixels in
images. For illustrative simplicity, we first consider the task
of inpainting missing pixels in the image, and then discuss
how to perform extrapolation and regularity editing using
the same inpainting-trained network.
Patch aggregation. We first aggregate all pixels from
other “objects” (loosely defined by the induceted program)
to inpaint the missing pixels. Denote all object centroids
reconstructed by the program as P, the centroid of the object
patch containing missing pixels (x0, y0), and all other cen-
troids P− = P \ {(x0, y0)}. The aggregation is performed
by generating |P−| images, the i-th of which is obtained by
translating the original image such that the centroid of the
i-th object in P− is centered at (x0, y0). Pixels without a
value after the shift are treated as 0. We stack the input im-
age with missing pixels plus all the |P−| images (the “patch
source”) as the input to the network.
Architecture. Our neural painting network (NPN) has a
U-Net [34] encoder-decoder architecture, designed to handle



a variable number of input images and be invariant to their
ordering. Demonstrated in Figure 4, the network contains a
stack of shared-weight convolution blocks and max-pooling
layers that aggregate information across all inputs. Paired
downsampling and upsampling layers (convolution layers
with strides) are skip-connected. The input of the network is
the stack of the corrupted input image plus source patches,
and the output of the network is the inpainted image. A
detailed printout of the generator’s architecture can be found
in the supplemental document.

The key insight of our design of the NPN is that it handles
a variable number of input images in any arbitrary order. To
this end, inspired by Aittala et al. [1] and Qi et al. [32], we
have a single encoder-decoder that processes the |P−|+ 1
images equally (“tracks”), and the intermediate feature maps
from these tracks get constantly max-pooled into a “global”
feature map, which is then broadcast back to the |P−| + 1
tracks and concatenated to each track’s local feature map
to be processed by the next block. Intuitively, the network
is guided to produce salient feature maps that will “survive”
the max-pooling, and the tracks exchange information by
constantly absorbing the global feature map.
Extrapolation and regularity editing as recurrent in-
painting. A key feature of program-guided NPNs is that
although they are trained only on the inpainting task, they
are able to be used directly for image extrapolation and reg-
ularity editing. With the program description of the image,
NPNs are aware of where the entities are in the image, and
hence able to cast extrapolation as recurrent inpainting of
multiple corrupted objects. For instance, to extrapolate a
64-pixel wide stripe to the right, an NPN first queries the
program description for where the new peaks are, and then
recurrently inpaints each object given all the previously in-
painted ones. Similarly for image regularity editing, when
the (regularly spaced) centroids provided by the program get
randomly perturbed, the pixels falling into their Voronoi cells
move together with them accordingly, leaving many “cracks”
on the image, which the NPN then inpaints recurrently.
Training. We train our NPNs with the same training
paradigm as Isola et al. [20]. We compute an L1 loss
and a patch-based discriminator loss, between the gener-
ated (inpainted) image and the ground-truth image. We train
image-specific NPNs for each individual image in the dataset.
While only training the network to inpaint missing pixels,
we show that the network can perform other tasks such as
image extrapolation and regularity editing, by only changing
the input to the network during inference. Other implemen-
tation details such as the hidden dimensions, convolutional
kernel sizes, and training hyperparameters can be found in
the supplementary material.

4. Experiments and Applications
We provide both quantitative and qualitative comparisons

with the baselines on two standard image manipulation tasks:

inpainting and extrapolation. We also show the direct ap-
plication of our approach to image regularity editing, a task
where the regularity of an image’s global structure gets ex-
aggerated or reduced. It is worth mentioning that these
three problems can be solved with a single model trained for
inpainting (see Section 3.3 for details). Finally, we demon-
strate how our program induction easily incorporates object
attributes (e.g., colors) in Internet images, in turn enabling
our NPNs to manipulate images with high-level reasoning
in an attribute-aware fashion. Please see the supplemental
material for ablation studies that evaluate each major compo-
nent of PG-IM. We start with an introduction to the datasets
and baseline methods we consider.

4.1. Dataset
We compare the performance of PG-IM with other base-

lines on two datasets: the Nearly-Regular Pattern (NRP)
dataset [22] and the Facade dataset [39]. The Nearly-Regular
Pattern dataset contains a collection of 48 rectified images
with a grid or nearly grid repetition structure. The Facade
dataset, specifically the CVPR 2010 subset, contains 109
rectified images of facades.

4.2. Baselines
We consider two groups of baseline methods: non-

learning-based and learning-based. Among the non-learning-
based methods are Image Quilting [11] and PatchMatch [6],
both of which are based on the stationary assumption of
the image structure. Intuitively, to inpaint a missing pixel,
they fill it with the content of another existing pixel with the
most similar context. Being unaware of the objects in the
image, they rely on human-specified hyperparameters, such
as the context window size, to produce reliable results. More
importantly, in the case of extrapolation, the user needs to
specify which pixels to paint, implicitly conveying the con-
cept of objects to the algorithms. For PatchMatch and Image
Quilting, we search for one set of optimal hyperparameters
and apply that to the entire test set.

We also compare PG-IM with a learning-based, off-the-
shelf algorithm for image inpainting: GatedConv [48]. They
use neural networks for inpainting missing pixels by learning
from a large-scale dataset (Place365 [49]) of natural images.
GatedConv is able to generate novel objects that do not
appear in the input image, which is useful for semantic photo
editing. However, this may not be desired when the image
of interest contains repeated but unique patterns: although
a pattern appears repeatedly in the image of interest, it may
not appear anywhere else in the dataset.

Therefore, we also consider another learning-based base-
line, originally designed for image extrapolation: Non-
Stationary Texture Synthesis (Non-Stationary) [50]. In their
framework, an image-specific neural network is trained for
each input image. Its objective is to extrapolate a small
(usually unique) patch (k × k) into a large one (2k × 2k).
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Figure 5: Corrupted input images and inpainting results (zoomed-in) by PG-IM and the baselines. The white pixels in the leftmost column
are missing pixels to inpaint. The rightmost column shows the ground-truth patches. PG-IM inpaints realistic image patches that are
consistent with the intricate global regularity and meanwhile different from the original, ground-truth patches.

Method L1 Mean (Std.) Inception Score

Nearly-Regular Patterns [22]

Image Quilting [11] 12.30 (2.903) 1.253
PatchMatch [6] 83.91 (17.62) 1.210

GatedConv [48] 50.45 (16.46) 1.196
Non-Stationary [50] 103.7 (23.87) 1.186
PG-IM (ours) 21.48 (5.375) 1.229

Facade [39]

Image Quilting [11] 13.50 (6.379) 1.217
PatchMatch [6] 81.35 (25.28) 1.219

GatedConv [48] 26.26 (133.9) 1.186
Non-Stationary [50] 133.9 (39.75) 1.199
PG-IM (ours) 14.40 (7.781) 1.218

Table 2: We compare PG-IM against off-the-shelf neural baselines
for image inpainting on both datasets. Our method outperforms
neural baselines with a remarkable margin across all metrics.

Although both of their method and PG-IM use single-image
training for generating missing pixels, PG-IM uses symbolic
programs as the guidance of the networks, enjoying both in-
terpretability and better performance for complex structures.
We also implement a variant of Non-Stationary, which keeps
the neural architecture and training paradigm as the original
version for texture synthesis, but use the same inpainting
data as our method for inpainting. For a fair comparison, we
train Non-Stationary and PG-IM with single sets of optimal

hyperparameters on all test images. For more results and
analysis, please refer to the supplementary material.

4.3. Inpainting
We compare PG-IM with GatedConv, Image Quilting, and

PatchMatch on the task of image inpainting. For quantitative
evaluations, we use the NRP and Facade datasets, each of
whose images gets randomly corrupted 100 times, giving us
a total of around 15,000 test images.

Table 2 summarizes the quantitative scores of different
methods. Following [25], we compare the L1 distance be-
tween the inpainted image and the original image, as well
as Inception score (IS) of the inpainted image. For all
the approaches, we hold out a test patch whose pixels are
never seen by the networks during training, and use that
patch for testing. Quantitatively, PG-IM outperforms the
other learning-based methods by large margins across both
datasets in both metrics. PG-IM recovers missing pixels
a magnitude more faithful to the ground-truth images than
Non-Stationary in the L1 sense. It also has a small variance
across different images and input masks. For comparisons
with non-learning-based methods, although Image Quilting
achieves the best L1 score, it tends to break structures in
the images, such as lines and grids (see Figure 5 for such
examples). Note that the reason why PatchMatch has worse
L1 scores is that it also modifies pixels around the holes to
achieve better image-level consistency. In contrast, the other
methods including PG-IM only inpaint holes and modify
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Figure 6: Extrapolation results by PG-IM and the baselines. The white pixels in the leftmost column indicate the pixels to be extrapolated.
PG-IM generates realistic images while preserving global regularity. In contrast, GatedConv fails to capture the regularity; Non-Stationary
does not preserve the original image contents; PatchMatch tends to generate blurry images in smoothing the transition; Image Quilting does
not guarantee the global structure gets preserved.

nothing else in the images.
Qualitative results for inpainting are presented in Figure 5.

Overall, our approach is able to preserve the “objects” in
the test images even if the objects are completely missing,
while other learning-based approaches either miss the in-
tricate structures (Non-Stationary on Images 1 and 2), or
produce irrelevant patches (learned from largely diverse im-
age datasets) that break the global structure of this particular
image (e.g., GatedConv on Image 2). Note how the image
patches inpainted by our approach is realistic and mean-
while quite different from the ground-truth patches (com-
pare our inpainting with the ground-truth Image 4). For the
non-learning-based approaches, the baselines suffer from
blurry outputs and sometimes produce inconsistent connec-
tions to the original image on boundaries. Moreover, as we
demonstrate in Figure 7, unlike our approach that combines
high-level symbolic reasoning and lower-level pixel manip-
ulations, PatchMatch fails to manipulate the pixels in an
attribute-aware fashion.

Runtime-wise, learning-methods including PG-IM, once
trained, inpaint an image in a forward pass (around 100ms on
GPUs), whereas non-learning-based approaches take around
15 minutes to inpaint one image.

4.4. Extrapolation
Figure 6 shows the extrapolation results by PG-IM and

the baselines. With the program description of the images,

PG-IM naturally knows where to extrapolate to, e.g., by
incrementing the for-loop range. This contrasts with the
baselines that either require the user to specify which pix-
els to extrapolate (PatchMatch, Image Quilting, and Gat-
edConv), or simply extrapolate to every possible direction
(Non-Stationary). Knowing where to extrapolate is particu-
larly crucial for images where the objects do not scatter all
over. Take the pieces of cereal in Figure 1B as an example.
PG-IM reasons about the global structure that the pieces of
cereal form, decides where to extrapolate to by relaxing its
program conditions, and finally extrapolates a new row.

As PatchMatch greedily “copies from” patches with the
most similar context, certain pixels may come from different
patches, therefore producing blurry extrapolation results (Im-
ages 1, 3, and 4). Learning from large-scale image datasets,
GatedConv fails to capture the repeated patterns specific to
each individual image, thus generating patterns that do not
connect to the image boundary consistently (Images 2 and
3). Non-Stationary treats the entire image as consisting of
only patterns of interest and expands the texture along all
four directions; artifacts show up when the image contains
more than the texture (bottom of Image 4). Also interesting
is that Non-Stationary can be viewed as a super-resolution
algorithm, in the sense that it is interpolating among the
replicated objects. As the rightmost column shows, during
extrapolation, PG-IM produces realistic and sharp patches
(Image 1), preserves the images’ global regularity, and con-
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Figure 7: PG-IM can reason about the attribute regularity of images, which supports object appearance–aware image extrapolation. PG-IM
w/o Attributes denotes a variant of PG-IM that does not include attributes. See the main text for detailed analysis and comparison.
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Figure 8: PG-IM enables automated and semantic-aware irregu-
larity exaggeration. By comparing the centroids of the detected
objects and the ones reconstructed by the program, we can measure
and exaggerate the structural irregularity of input images.

nects consistently to the image boundary (Images 2-4).

4.5. Image Regularity Editing
With a program describing the image’s ideal global reg-

ularity, PG-IM is able to exaggerate imperfections in the
global regularity by magnifying the discrepancy between
what the program depicts and the detected object centroids.
A similar task has been discussed by [9]. In Figure 8, we
magnify the displacement vectors between the program-
provided and detected centroids by two, and shift the Voronoi
cells together with their respective centroids, leaving missing
values among the cells. An NPN then fills in the gaps by
recurrent inpainting.

4.6. Attribute Regularity
Beyond using for-loops and if-conditions to capture the

global regularity of objects, PG-IM can also reason about the
regularity of object appearance variations (i.e., the attribute
regularity). Our model automatically clusters objects into
groups. Beyond knowing where to extrapolate to, with the

attribute regularity described by the program, our NPNs gen-
erate new pixels from only patches of the correct attributes.

Figure 7 illustrates this idea. We show the image ex-
trapolation results on images with attribute regularities, and
compare PG-IM with a variant that does not consider object
attributes, as well as a strong baseline: PatchMatch. Without
explicit modeling of object attributes, the color of the new
objects generated by PG-IM w/o Attributes fails to preserve
the global attribute regularity. Meanwhile, due to the exis-
tence of objects with similar colors, PatchMatch mixes up
two different colors, resulting in blurry output patches (Fig-
ure 7L) or extrapolation results that break the global attribute
regularity (the middle object in the top row of Figure 7R’s
zoom-in windows should be purple, not green).

5. Discussion
This paper presents a neuro-symbolic approach to describ-

ing and manipulating natural images with repeated patterns.
It combines the power of program induction—as symbolic
tools for describing repetition, symmetry, and attributes—
and deep neural networks—as powerful image generative
models. PG-IM support various tasks: image inpainting,
extrapolation, and regularity editing.

Our results also suggest multiple future directions. First,
the variations in object appearance are currently handled as
discrete properties. We leave the interpretation of attributes
that have continuous values, such as the color spectrum in
Figure 7, as future work. Second, given only a facade image
containing a number of windows, humans can extrapolate
the image by adding doors at the bottom and roof at the top.
Combining regularity inference and data-driven approaches
is a meaningful direction. Finally, the representational power
of PG-IM is limited by the DSL. PG-IM currently does not
generalize to unseen patterns, such as rotational patterns.
Future works may consider a more flexible DSL, or even
discovering new patterns from data.
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